Problem 82

(a) A car speedometer has a 5% uncertainty. What is the range of possible speeds when it reads $90 \mathrm{~km} / \mathrm{h}$? (b) Convert this range to miles per hour. Note $1 \mathrm{~km}=0.6214 \mathrm{mi}$.

Solution

Part (a)

Use the percent uncertainty formula.

$$
\text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \%
$$

Plug in the given numbers.

$$
5 \%=\frac{\delta A}{90 \frac{\mathrm{~km}}{\mathrm{~h}}} \times 100 \%
$$

Solve for δA, the uncertainty.

$$
\delta A=\frac{5 \%}{100 \%}\left(90 \frac{\mathrm{~km}}{\mathrm{~h}}\right)=4.5 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Consequently, the range of possible speeds when the speedometer reads $90 \mathrm{~km} / \mathrm{h}$ is

$$
(90 \pm 4.5) \frac{\mathrm{km}}{\mathrm{~h}}
$$

The minimum and maximum speeds are

$$
\begin{aligned}
& \text { Minimum Speed: } \quad 90-4.5=85.5 \frac{\mathrm{~km}}{\mathrm{~h}} \approx 86 \frac{\mathrm{~km}}{\mathrm{~h}} \\
& \text { Maximum Speed: } \quad 90+4.5=94.5 \frac{\mathrm{~km}}{\mathrm{~h}} \approx 95 \frac{\mathrm{~km}}{\mathrm{~h}} .
\end{aligned}
$$

Part (b)

Use the given conversion factor to change these speeds to units of miles per hour.

$$
\begin{aligned}
& \text { Minimum Speed: } \quad 86 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{0.6214 \mathrm{mi}}{1 \mathrm{~km}} \approx 53 \frac{\mathrm{mi}}{\mathrm{~h}} \\
& \text { Maximum Speed: } \quad 95 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{0.6214 \mathrm{mi}}{1 \mathrm{~km}} \approx 59 \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

The range of possible speeds in miles per hour is therefore roughly

$$
\begin{gathered}
\left(\frac{59+53}{2} \pm \frac{59-53}{2}\right) \frac{\mathrm{mi}}{\mathrm{~h}} \\
\quad(56 \pm 3) \frac{\mathrm{mi}}{\mathrm{~h}} .
\end{gathered}
$$

